o
1 8 .fnundatinnspl -
uumpulersmence
Artificial
Intelligence

18.1

Objectives
After studying this chapter, the student should be able to:

O Define and give a brief history of artificial intelligence.
O Describe how knowledge is represented in an intelligent agent.
O Show how expert systems can be used when a human expert is not available.

O Show how an artificial agent can be used to simulate mundane tasks

performed by human beings.

O Show how expert systems and mundane systems can use different search

techniques to solve problems.

O Show how the learning process in humans can be simulated, to some extent,
using neural networks that create the electronic version of a neuron called a

perceptron.

18.2

INTRODUCTION

In this section we first try to define the term artificial
intelligence (Al) informally and give a brief history of it.
We also define an intelligent agent and its two broad
categories. Finally, we mention two programming
languages that are commonly wused in artificial
intelligence.

18.3

What is artificial intelligence?

Although there is no universally-agreed definition of
artificial intelligence, we accept the following definition that
matches the topics covered in this chapter:

Artificial intelligence is the study of programmed
systems that can simulate, to some extent, human
activities such as perceiving, thinking,
learning and acting.

18.4

A brief history of artificial intelligence

Although artificial intelligence as an independent field of
study is relatively new, it has some roots in the past. We can
say that it started 2,400 years ago when the Greek
philosopher Aristotle invented the concept of logical
reasoning. The effort to finalize the language of logic
continued with Leibniz and Newton. George Boole
developed Boolean algebra in the nineteenth century
(Appendix E) that laid the foundation of computer circuits.
However, the main idea of a thinking machine came from
Alan Turing, who proposed the Turing test. The term
“artificial intelligence” was first coined by John McCarthy
in 1956.

18.5

The Turing test

In 1950, Alan Turing proposed the Turing test, which
provides a definition of intelligence in a machine. The test
simply compares the intelligent behavior of a human being
with that of a computer. An interrogator asks a set of
questions that are forwarded to both a computer and a
human being. The interrogator receives two sets of
responses, but does not know which set comes from the
human and which set from the computer. After careful
examination of the two sets, if the interrogator cannot
definitely tell which set has come from the computer and
which from the human, the computer has passed the Turing
test for intelligent behavior.

18.6

Intelligent agents

An intelligent agent is a system that perceives its
environment, learns from it, and interacts with it
intelligently. Intelligent agents can be divided into two broad
categories: software agents and physical agents.

Software agents
A software agent is a set of programs that are designed to

do particular tasks. For example, a software agent can
check the contents of received e-mails and classify them into
different categories (junk, less important, important, very
important and so on). Another example of a software agent is
a search engine used to search the World Wide Web and find
sites that can provide information about a requested subject.

18.7

Physical agents

A physical agent (robot) is a programmable system that
can be used to perform a variety of tasks. Simple robots
can be used in manufacturing to do routine jobs such as
assembling, welding, or painting. Some organizations use
mobile robots that do routine delivery jobs such as
distributing mail or correspondence to different rooms.
Mobile robots are used underwater to prospect for oil. A
humanoid robot is an autonomous mobile robot that is
supposed to behave like a human.

18.8

Programming languages
Although some all-purpose languages such as C, C++ and

Java are used to create intelligent software, two languages
are specifically designed for Al: LISP and PROLOG.

LISP

LISP (LISt Programming) was invented by John McCarthy
in 1958. As the name implies, LISP is a programming
language that manipulates lists.

PROLOG

PROLOG (PROgramming in LOGic) is a language that
can build a database of facts and a knowledge base of rules.
A program in PROLOG can use logical reasoning to answer
questions that can be inferred from the knowledge base.

18.9

18-2 KNOWLEDGE REPRESENTATION

If an artificial agent is supposed to solve some problems

related to the real world, it somehow needs to be able to
represent knowledge. Facts are represented as data
structures that can be manipulated by programs stored
inside the computer. In this section, we describe four
common methods for representing knowledge:
semantic networks, frames, predicate logic and rule-
based systems.

18.10

Semantic networks

A semantic network uses directed graphs to represent
knowledge. A directed graph as discussed in Chapter 12 is
made of vertices (nodes) and edges (arcs).

Animal

Subclass ZF ZF Subclass
. Has
Reptile Mammal —)

ZﬁSuln;tue\.\.

Dog

Male

Figure 18.1 A simple semantic network

18.11

Concepts

A concept can be thought of as a set or a subset. For
example, animal defines the set of all animals, horse defines
the set of all horses and is a subset of the set animal.

Relations

In a semantic network, relations are shown by edges. An
edge can define a subclass relation, an instance relation
attribute, an object (color, size, ...), or a property of an
object.

18.12

Frames

Frames are closely related to semantic networks. In frames,
data structures (records) are used to represent the same
knowledge. One advantage of frames over semantic
networks is that programs can handle frames more easily
than semantic networks.

o] I
Superclass Instance of Is
Reptile Roxy
| Animal | | Head | Dog | | Male |
Superclass Has Instance of Is
Mammal Ringo
Superclass

Dog

Figure 18.2 A set of frames representing the semantic network in Figure 18.1
18.13

Objects

A node in a semantic network becomes an object in a set
of frames, so an object can define a class, a subclass or an
instance of a class. In Figure 18.2, reptile, mammal, dog,
Roxy and Ringo are objects.

Slots

Edges in semantic networks are translated into slots—fields
in the data structure. The name of the slot defines the type
of the relationship and the value of the slot completes the
relationship. In Figure 18.2, for example, animal is a slot in

the reptile object.

Superclass

18.14 Reptile

Predicate logic

The most common knowledge representation is predicate
logic. Predicate logic can be used to represent complex facts.
It is a well-defined language developed via a long history of
theoretical logic. Although this section defines predicate
logic, we first introduce propositional logic, a simpler
language. We then discuss predicate logic, which employs
propositional logic.

18.15

Propositional logic

Propositional logic is a language made up from a set of
sentences that can be used to carry out logical reasoning
about the world. Propositional logic uses five operators.

ATA | | A BAAB| | A BIAVB | A B|A=B| | A B {eD
Fid PRy ¥F FoF] R FoRyT Forypa
[|F FoTyf FT)I FoT) T I
NOT I F| T T FIT I F| T [F| T
I 1)1 I T 1 I 1T I T11

AND OR If...Then... If and only if

Figure 18.3 Truth table for five operators in propositional logic

18.16

A sentence in this language is defined recursively as shown

below:
1. An uppercase letter, such as A, B, S or T, that represents
a statement in a natural languages, is a sentence.
2. Any of the two constant values (true and false) is a
sentence.
3. If P is a sentence, then —P is a sentence.
4. If P and Q) are sentences, then PvQ, PAQ, P—Q and P~

18.17

() are sentences.

Example 18.1

The following are sentences in propositional language:

a.
b.

C.

o

18.18

Today is Sunday (S).

It is raining (R).

Today is Sunday or Monday (S v M).
It is not raining (— R).

If a dog is a mammal then a cat is a mammal (D — C).

Deduction

In Al we need to create new facts from the existing facts. In
propositional logic, the process is called deduction. Given
two presumably true sentences, we can deduce a new true
sentence. For example:

Either he is at home or at the office Premise 1:
He is not at home Premise 2:
Therefore, he is at the office Conclusion

If we use H for “he is at home”, O for “he is at office” and
the symbol |- for the “therefore”, then we can show the
above argument as:

(Hvo, =H} |- ©

18.19

One way to find if an argument is valid is to create a truth
table for the premisses and the conclusion. A conclusion is
invalid if we can find a counterexample case: a case in
which both premisses are true, but the conclusion is false.

An argument is valid if no
counterexample can be found.

18.20

Example 18.2

The validity of the argument {H v O, “H} |- O can be proved
using the following truth table:

H O |HvOo| -H o)
: E : T
: T T T
T E T :
T T T :

Premise Premise Conclusion

The only row to be checked is the second row. This row does not
show a counterexample, so the argument is valid.

18.21

Example 18.3

The argument {R — C, C} |- R is not valid because a counter
example can be found:

R c |R—>cC| C R
: : T F
: T T T
T : F F
T T T T

Premise Premise Conclusion

Here row 2 and row 4 need to be checked. Although row 4 is ok,
row 2 shows a counterexample (two true premisses result in a
false conclusion). The argument is therefore invalid.

18.22

11

Predicate logic

In propositional logic, a symbol that represents a sentence is
atomic: it cannot be broken up to find information about its
components. For example, consider the sentences:

Py "Lindais Mary’s mother" Py: "Mary is Anne's mother”

We can combine these two sentences in many ways to create
other sentences, but we cannot extract any relation between
Linda and Anne. For example, we cannot infer from the
above two sentences that Linda is the grandmother of Anne.
To do so, we need predicate logic: the logic that defines the
relation between the parts in a proposition.

18.23

In predicate logic, a sentence is divided into a predicate and
arguments. For example, each of the following propositions
can be written as predicates with two arguments:

P;: “Linda is Mary's mother” becomes mother (Linda, Mary)

P,: "Mary is Anne’s mother” becomes mother(Mary,Anne)

The relationship of motherhood in each of the above
sentences is defined by the predicate mother. If the object
Mary in both sentences refers to the same person, we can
infer a new relation between Linda and Anne:

grandmother (Linda, Anne)

18.24

12

A sentence in predicate language is defined as follows:

1. A predicate with n arguments is a sentence.

2. Any of the two constant values (true and false) is a
sentence.

3. If P is a sentence, then —P 1s a sentence.

4. If P and Q are sentences, then P A Q, P v Q, P — Q, and
P < Q are sentences.

18.25

Example 18.4

1. The sentence “John works for Ann’s sister” can be written as:
Works [John, sister(Ann)] in which the function sister(Ann)
is used as an argument.

2. The sentence “John’s father loves Ann’s sister” can be written
as: loves[father(John), sister(Ann)]

18.26

13

Predicate logic allows us to use quantifiers. Two quantifiers
are common in predicate logic:

1. The first, which is read as “for all”, is called the
universal quantifier: it states that something is true for
every object that its variable represents.

2. The second, which is read as “there exists”, is called the
existential quantifier: it states that something is true for
one or more objects that its variable represents.

18.27

Example 18.5

1. The sentence “All men are mortals can be written as:

Vx[man (x) — mortal (x)]

2. The sentence “Frogs are green” can be written as:

Vx[frog (x) — green (x)]

3. The sentence “Some flowers are red” can be written as:

3 x[flower (x) A red(x)]

18.28

14

SenJRER] Continued

4. The sentence “John has a book” can be written as:

d x[book (x) A has (John, x)]

5. The sentence “No frog is yellow” can be written as:

Vx[frog (x) — -yellow (x)]

or

-d x[frog(x) A yellow(x)]

18.29

Deduction

In predicate logic, if there is no quantifier, the verification of
an argument is the same as that which we discussed in
propositional logic. However, the verification becomes more
complicated if there are quantifiers. For example, the
following argument is completely valid.

All men are mortals Premise 1:
Socrates is a man Premise 2:
Therefore, Socrates is mortal Conclusion

Verification of this simple argument is not difficult. We can
write this argument as shown next:

18.30

15

Vx [man (x) — mortal (x)] , man(Socrates) \— mortal (Socrates)
Since the first premise talks about all men, we can replace

one instance of the class man (Socrates) in that premise to
get the following argument:

man (Socrates) - mortal(Socrates) , man(Socrates) |- mortal (Socrates)

Which is reduced to M1 — M2, M1 |- M2, in which M1 is
man(Socrates) and M2 is mortal(Socrates). The result is an
argument in propositional logic and can be easily validated.

18.31

Beyond predicate logic

There have been further developments in logic to include the
need for logical reasoning. Some examples of these include
high-order logic, default logic, modal logic and temporal
logic.

18.32

16

Rule-based systems
A rule-based system represents knowledge using a set of
rules that can be used to deduce new facts from known
facts. The rules express what is true if specific conditions are
met. A rule-based database is a set of if... then...
statements in the form

If AthenB or A — B

in which A is called the antecedent and B is called the
consequent. Note that in a rule-based system, each rule is
handled independently without any connection to other rules.

18.33

Components

A rule-based system is made up of three components: an
interpreter (or inference engine), a knowledge base and a
fact database, as shown in Figure 18.4.

Fact database

b

Interpreter
Knowledge base E— (Interference engine)

Figure 18.4 The components of a rule-based system

18.34

17

Forward chaining

Forward chaining is a process in which an interpreter uses a
set of rules and a set of facts to perform an action.

Start ?
-

Stop

~ ~
I'ind all rules s 1= nlgleorsg{ilélilﬁeesdcan
that can be satisfied 2: No more rules

can be satisfied

Execute the first rule
that passes the conflict

resolution strategy

Take the action that
resulted from applying
the rule

|
Figure 18.5 Flow diagram for forward chaining

18.35

Backward chaining

Forward chaining is not very efficient if the system tries to
prove a conclusion. In this case, it may be more efficient if
backward chaining is used.

Start

Stop

. . . “~o| 1: Goatisi
Find a rule in which the oa’1s m
. A fact database
goal is the conclusion
2: Goal is not in

i fact database

Try to prove
each of the facts
in that rule

|
Figure 18.6 Flow diagram for backward chaining

18.36

18

18-3 EXPERT SYSTEMS

Expert systems use the knowledge representation
languages discussed in the previous section to
perform tasks that normally need human expertise.
They can be used in situations in which that expertise is
in short supply, expensive or unavailable when required.
For example, in medicine, an expert system can be used
to narrow down a set of symptoms to a likely subset of
causes, a task normally carried out by a doctor.

18.37

Extracting knowledge

An expert system is built on predefined knowledge about its
field of expertise. An expert system in medicine, for
example, is built on the knowledge of a doctor specialized in
the field for which the system is built: an expert system is
supposed to do the same job as the human expert. The first
step in building an expert system is, therefore, to extract the
knowledge from a human expert. This extracted knowledge
becomes the knowledge base we discussed in the previous
section.

To be able to infer new facts or perform actions, a fact
database is needed in addition to the knowledge base for a
knowledge representation language. The fact database in an
expert system 1s case-based, in which facts collected or
measured are entered into the system to be used by the

11’\{"91‘91’1{"9 enoine

19

Architecture

Figure 18.7 shows the general idea behind the architecture of
an expert system.

Expert system shell

E S ‘t g3
A

Inference engine

~

v
N
>

Knowledge Fact
base database

Figure 18.7 The architecture of an expert system

18.39

Another goal of Al is to create a machine that behaves
like an ordinary human. One of the meanings of the
word “perception” is understanding what is received

through the senses—sight, hearing, touch, smell, taste.
A human being sees a scene through the eyes, and the
brain interprets it to extract the type of objects in the
scene. A human being hears a set of voice signals
through the ears, and the brain interprets it as a
meaningful sentence, and so on.

18.40

20

Image processing

Image processing or computer vision is an area of Al that
deals with the perception of objects through the artificial
eyes of an agent, such as a camera. An image processor takes
a two-dimensional image from the outside world and tries to
create a description of the three-dimensional objects present
in the scene. Although, this is an easy tasks for a human
being, it turns out to be a difficult task for an artificial agent.
The input presented to an image process is one or more
images from the scene, while the output is a description of
the objects in the scene. The processor uses a database
containing the characteristics of objects for comparison.

18.41

Two-dimensional
1mages

|

Image processor

Database of object
characteristics

Three-dimensional
characteristics of objects

Figure 18.8 The components of an image processor

18.42

21

Edge detection

The first stage in image processing is edge detection: finding
where the edges in the image are. Edges can define the
boundaries between an object and its background in the
image. Normally there is a sharp contrast between the
surfaces belonging to an object and the environment,
assuming that there is no camouflage.

k=]

K=l (=]
=l

Ll=]
Ll (B0 S (B0 e Neg (X
L=l e B B el L]

WO lkd fun s (B
-

=
oo s o e o o

(=] (L= (X (X (K}

O
L=
=)
A=
L=
=

Image Intensity of pixels
Figure 18.9 The edge-detection process

18.43

Segmentation

Segmentation is the next stage in image analysis.
Segmentation divides the image into homogenous
segments or areas. The definition of homogeneity differs in
different methods, but in general, a homogenous area is an
area in which the intensity of pixels varies smoothly.
Segmentation is very similar to edge detection. In edge
detection, the boundaries of the object and the background
are found: in segmentation, the boundaries between different
areas inside the object are found. After segmentation, the
object is divided into different areas.

18.44

22

Finding depth

The next step in image analysis is to find the depth of the
object or objects in the image. Two general methods have
been used for this purpose: stereo vision and motion.

Finding orientation

Orientation of the object in the scene can be found using two
techniques: shading and texture.

Figure 18.10 The effect of shading on orientation finding

18.45

Object recognition

The last step in image processing is object recognition. To
recognize an object, the agent needs to have a model of the
object in memory for comparison. However, creating and
storing a model for each object in the view is an impossible
task. One solution is to assume that the objects to be
recognized are compound objects made of a set of simple
geometric shapes.

QL a

Block Cylinder

Truncated cone Pyramid Truncated pyramid

Figure 18.11 Primitive geometric shapes
18.46

23

Language understanding

One of the inherent capabilities of a human being is to
understand—that is, interpret—the audio signal that they
perceive. A machine that can understand natural language
can be very useful in daily life. For example, it can replace a
telephone operator—most of the time. It can also be used on
occasions when a system needs a predefined format of
queries. We can divide the task of a machine that
understands natural language into four consecutive steps:
speech recognition, syntactic analysis, semantic analysis
and pragmatic analysis.

18.47

Speech recognition

The first step in natural language processing is speech
recognition. In this step, a speech signal is analyzed and the
sequence of words it contains are extracted. The input to the
speech recognition subsystem i1s a continuous (analog)
signal: the output is a sequence of words. The signal needs to
be divided into different sounds, sometimes called
phonemes. The sounds then need to be combined into words.
The detailed process, however, is beyond the scope of this
book: we leave the task to specialized books in speech
recognition.

18.48

24

Syntactic analysis

The syntactic analysis step is used to define how words are
to be grouped in a sentence. This is a difficult task in a
language like English, in which the function of a word in a
sentence is not determined by its position in the sentence.
For example, in the following two sentences:

Mary rewarded John.

John was rewarded by Mary.

it is always John who is rewarded, but in the first sentence
John is in the last position and Mary is in the first position. A
machine that hears any of the above sentences needs to
interpret them correctly and come to the same conclusion no
matter which sentence is heard.

18.49

Grammar

The first tool to correctly analyze a sentence is a well-
defined grammar. We use a simple version of BNF (Backus-
Naur Form) that is used in computer science to define the
syntax of a programming language (Table 18.1).

Table 18.1 A simple grammar

Rule

1 |Sentence — NounPhrase VerbPhrase

Adjective — [big] | [small] | [tall] | [short] | [white] | [black] |

2 |NounPhrase — Noun | Article Noun | Article Adjective Noun

3 |VerbPhrase — Verb|Verb NounPhrase | Verb NounPhrase Adverb
4 |Noun — [home] | [cat] | [water] | [dog] | [John] | [Mary] |

5 |Article - [a]| [the]

6

7

Verb — [goes] | [comes] | [eats] | [drinks] | [has]

18.50

25

Parser

It should be clear that even a simple grammar as defined in
Table 18.1 uses different options. A machine that determines
if a sentence is grammatically (syntactically) correct does not
need to check all possible choices before rejecting a sentence
as an invalid one. This is done by a parser.

Sentence
NounPhrase VerbPhrase
Noun Verb NounPhrase

Article Adjective Noun

John has a white dog

Figure 18.12 Parsing a sentence

18.51

Semantic analysis

The semantic analysis extracts the meaning of a sentence
after it has been syntactically analyzed. This analysis creates
a representation of the objects involved in the sentence, their
relations and their attributes. The analysis can use any of the
knowledge representation schemes we discussed before. For
example, the sentence “John has a dog” can be represented
using predicate logic as:

d x dog(x) has (John, x)

18.52

26

Pragmatic analysis

The three previous steps—speech recognition, syntax
analysis and semantic analysis—can create a knowledge
representation of a spoken sentence. In most cases, another
step, pragmatic analysis, is needed to further clarify the

purpose of the sentence and to remove ambiguities.

18.53

One of the techniques for solving problems in artificial
intelligence is searching, which is discussed briefly in
this section. Searching can be describe as solving a
problem using a set of states (a situation). A search
procedure starts from an initial state, goes through

intermediate states until finally reaching a target state.
For example, in solving a puzzle, the initial state is the
unsolved puzzle, the intermediate states are the steps
taken to solve the puzzle and the target state is the
situation in which the puzzle is solved. The set of all
states used by a searching process is referred to as the
search space.

18.54

27

Action b

Action

Action a

Action e

Actiond

Figure 18.13 An example of a search space

18.55

Example 18.6

One example of a puzzle that shows the search space is the
famous 8-puzzle. The tiles are numbered from 1 to 8. Given an
initial random arrangement of the tiles (the initial state), the goal
is to rearrange the tiles until a ordered arrangement of the tiles is
reached (the target state). The rule of the game is that a tile can be
slid into an empty slot.

Unsolved Solved
puzzle puzzle

] . [EOE
[T]] —— (] |[]
GO\] L]

One possible One possible
initial state target state

Figure 8.14 A possible initial and final state for Example 18.6

18.56

28

Search methods

There are two general search methods: brute-force and
heuristic. The brute force method is itself either breadth-first
or depth first

Brute-force search

We use brute-force search if we do not have any prior
knowledge about the search. For example, consider the steps
required to find our way through the maze in Figure 18.15
with points A and T as starting and finishing points
respectively. The tree diagram for the maze is shown in
Figure 18.16.

18.57

Figure 18.15 A maze used to show brute force search

18.58

29

/®\C

/\ |

/\ | |
N
/\

Figure 18.16 The tree for the maze in Figure 18.15

/ \

/ \ ¢|¢

O
N
/ \\

Figure 18.17 Depth-first search of the tree in Figure 18.16

30

Level 1 //, @
g \

Level 2 = :B_ —————————— e e~
Level 3 ____FT:_,_-—_- ——————— PR e g

R | |
Lol 2o H D e = s e G- mm—— == Pm-

//ﬂ\\““'”'
Level 5 —':L:::ji‘:——l(—--_:}::_

| ==
Level 6 _—;I’{'_’_ ______ N = =g =0

Level 7 i%— - —)v

Figure 18.18 Breadth-first search of the tree in Figure 18.16

18.61

Heuristic search

Using heuristic search, we assign a quantitative value called
a heuristic value (h value) to each node. This quantitative
value shows the relative closeness of the node to the goal

state. For example, consider solving the 8-puzzle of Figure
18.19.

Initial state Goal state
213 1213
71816 — | 4
514 71615
h=6 h=0

Figure 18.19 Initial and goal states for heuristic search

18.62

31

Table 18.2 Heuristic value

Tile number 112(3|4|5|6|7|8]| Total
Heuristic value of initial state ofofof1[1]2|1]1 6
Heuristic value of goal state o|jo|ojo|0O|0O|O|O 0
Initial state
112(3
718|16|6
514
/\
112(3 11213
81615 718167
71514 5 4
18.63 Figure 18.20 The heuristic values for the first step
Initial State
11213
T|8|6]|6
|5]4]
T
[1]z]3 1]2]3
BB 7|8l6|7
[F15]5 5| &
T
1[2]3 2[3
8| |6|4 1866
754 |7[5]4
1 3 1]2]3 1[2]3]
8|2]6]|s5 s|6ls 86| |3
7[5]4 7] 7]5]4]
T
15)2 1 2'3
BEEr 8[6 42
7054 s
S
1]2]3
(81614 11
74 5
—
[1T2T3 1]2]3
BEBE 8| (4]0
75 B
Goal state

Figure 18.21 Heuristic search for solving the 8-puzzle

18.64

32

18-5 NEURAL NETWORKS

If an intelligent agent is supposed to behave like a
human being, it may need to learn. Learning is a
complex biological phenomenon that is not even totally
understood in humans. Enabling an artificial
intelligence agent to learn is definitely not an easy task.
However, several methods have been used in the past
that create hope for the future. Most of the methods use
inductive learning or learning by example. This means
that a large set of problems and their solutions is given
to the machine from which to learn. In this section we
discuss only neural networks.

18.65

Biological neurons

The human brain has billions of processing units, called
neurons. Each neuron, on average, is connected to several
thousand other neurons. A neuron is made of three parts:
soma, axon and dendrites, as shown in Figure 18.22.

Nucleus
|
Axon T
Soma Synapse
(connection point
Dendrite to another neuron)

Figure 18.22 A simplified diagram of a neuron

18.66

33

Perceptrons

A perceptron is an artificial neuron similar to a single
biological neuron. It takes a set of weighted inputs, sums the
inputs and compares the result with a threshold value. If the
result is above the threshold value, the perceptron fires,
otherwise it does not. When a perceptron fires, the output is
1: when it does not fire, the output is zero.

.\'] . \1']

Xg . Wy

Il]pLIT.S X3.w3 @ Outpm ® yv(Oorl)

k.

\4 . 11'4

L .‘\'5 % \\'5

Figure 18.23 A perceptron

18.67

Example 18.7

Assume a case study with three inputs and one output. There are
already four examples with known inputs and outputs, as shown
in the following table:

Inputs Output

1 0 0 0
0 0 1 0
1 0 1 0

1 1 1 1

This set of inputs is used to train a perceptron with all equal
weights (w; = w, = w;). The threshold is set to 0.8. The original
weight for all inputs is 50%. The weights remain the same if the
output produced is correct—that is, matches the actual output.

18.68

34

SEINCHENE Continued

The weights are increased by 10% if the output produced is less
than the output data: the weights are decreased by 10% if the
output produced is greater than the output data. The following
table shows the process of applying the previous established
examples to train the perceptron.

Inputs Weight |Weighted sum p?oujﬁ :et J f::;ji Action
1 0| 0 | 50% 0.5 0 0 None
0 0 1 50% 1 1 0 Decrease
1 0 [1 | 40% 8.0 0 0 None
1 1 1 40% 1.2 1 1 None

18.69

Multi-layer networks

Several layers of perceptions can be combined to create
multilayer neural networks. The output from each layer
becomes the input to the next layer. The first layer is called
the input layer, the middle layers are called the hidden layers
and the last layer is called the output layer.

Input nodes Hidden nodes Output nodes

Figure 18.24 A multi-layer neural network
18.70

Applications

Neural networks can be used when enough pre-established
inputs and outputs exist to train the network. Two areas in
which neural networks have proved to be useful are optical
character recognition (OCR), in which the intelligent agent
is supposed to read any handwriting, and credit assignment,
where different factors can be weighted to establish a credit
rating, for example for a loan applicant.

18.71

36

